An X message is used to transfer data from ISU to GS or from GS to ISU. The data is assumed to be binary and each byte can have any value from 0x00 to 0xff. The format of the message is the same regardless of direction of transmission:

\[\text{Xnnmmddp<data>cc>} \]

- \(\text{X} \) = the character X
- \(\text{nn} \) = number of data characters in the message following after nn. The count does not include X, nn, or anything from $ to the end >. The count is in 2 binary bytes with MSB first and LSB second.
- \(\text{mm} \) = serial number of SOLOII. The SN is in 2 binary bytes with MSB first and LSB second.
- \(\text{dd} \) = the dive number in 2 binary bytes with MSB first and LSB second.
 : Dive number begins at -1 for the start-up, increments to 0 for the test dive, increments +1 for all normal' (0xE2) dives.
- \(\text{p} \) = one-byte packet ID index, range 0 to 255. Used to identify multiple X messages within a dive cycle. The data for each dive cycle starts with p=0.
- \(\text{<data>} \) = binary data characters. The length of \(\text{<data>} \) = nn -5. The contents of the \(\text{<data>} \) section is described below.
- \(\text{$} \) = a dollar sign delimiter at start of the checksum
- \(\text{cc} \) = the 8 bit byte-wise checksum from X to the byte preceding the $. The 8 bit sum is coded as 2 4bit nibbles. The binary value of a nibble is converted to a visible character by adding 0x30. Thus a value of 0x0 -> 0x30 = character '0', 0x1 -> 0x31 = '1', 0xe -> 0x3e = '>', and 0xf -> 0x3f = '?'.
- \(\text{>} \) = a > delimiter at end of checksum which also serves as a prompt to GS that the ISU is done transmitting and that the GS may now transmit to ISU.

The remainder of this document describes the format of the \(\text{<data>} \) portion of the message sent from SOLOII to the ground station (GS). The format of commands from GS sent to SOLOII will be described in another document.

Highlights in document
Fields that are moved relative to the previous float version (SOLOII v1.4) are highlighted in cyan
New fields relative to the previous version are highlighted in yellow
The <data> section contains information from multiple sensors. Data from successive sensors are separated by a semicolon (’;’ = 0x 3b); the final sensor is terminated by a ’;’ (immediately preceding the $ delimiter).

\[ID\text{jj}<\text{sensor_data}>; \]

ID = one-byte sensor ID code.

jj = Number of bytes for this sensor. The count includes ID, jj, and the trailing ';' (immediately preceding the $ delimiter).

<sensor_data> = binary data characters. The length of **<sensor_data>** = jj-4 bytes, and its contents are described below for each sensor.

; = delimiter at the end of each sensor's data.

The **ID** byte is divided into two 4-bit nibbles. The MS nibble identifies the sensor and the second nibble specifies the message number for that sensor. For example, the ID for first Pressure message is 0x10, the second is 0x11, the third 0x12, etc. For a 1000 sample profile, there will be 6 messages for each of the pressure, salinity and temperature sensors.

<table>
<thead>
<tr>
<th>Sensor</th>
<th>ID byte(hex)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPS</td>
<td>00</td>
<td>fix at end of first diagnostic dive at start of mission</td>
</tr>
<tr>
<td>GPS</td>
<td>01</td>
<td>fix at before leaving surface</td>
</tr>
<tr>
<td>GPS</td>
<td>02</td>
<td>fix at end of normal profiling ascent</td>
</tr>
<tr>
<td>GPS</td>
<td>03</td>
<td>fix following mission abort</td>
</tr>
<tr>
<td>GPS</td>
<td>05</td>
<td>fix during BITest</td>
</tr>
<tr>
<td>Pressure</td>
<td>1x</td>
<td>depths of CTD readings (scaled 1st difference)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x=0-7: upper ocean bin averaged data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x=8-F: deep spot sampled data</td>
</tr>
<tr>
<td>Temperature</td>
<td>2x</td>
<td>depth series of temperature (scaled 1st difference)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x=0-7: upper ocean bin averaged data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x=8-F: deep spot sampled data</td>
</tr>
<tr>
<td>Salinity/Conductivity</td>
<td>3x</td>
<td>depth series of salinity (scaled 1st difference)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x=0-7: upper ocean bin averaged data</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x=8-F: deep spot sampled data</td>
</tr>
<tr>
<td>Fall Rate</td>
<td>40</td>
<td>series of time,depth during SOLO II downward profile</td>
</tr>
<tr>
<td>Rise Rate</td>
<td>50</td>
<td>series of time,depth from drift depth to surface</td>
</tr>
<tr>
<td>Pump Series</td>
<td>60</td>
<td>pressure,time, voltage,current,voltage, vacuum for each pump</td>
</tr>
<tr>
<td>Time</td>
<td>7x</td>
<td>depth series of timereferenced to 0x40 (scaled 1st difference)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x=8-F: Only returned during deep spot sampling</td>
</tr>
<tr>
<td>High Resolution Pressure</td>
<td>9x</td>
<td>High Resolution Pressure (scaled 1st difference)</td>
</tr>
<tr>
<td>High Resolution Temperature</td>
<td>ax</td>
<td>High Resolution Temperature (scaled 1st difference)</td>
</tr>
<tr>
<td>High Resolution Salinity</td>
<td>bx</td>
<td>High Resolution Salinity (scaled 1st difference)</td>
</tr>
<tr>
<td>Mission EEPROM</td>
<td>dx</td>
<td>ASCII dump of mission parameters in EEPROM</td>
</tr>
<tr>
<td>Engineering</td>
<td>e0</td>
<td>diagnostic data in first diagnostic dive</td>
</tr>
<tr>
<td>Engineering</td>
<td>e2</td>
<td>engineering data in normal profiling dive</td>
</tr>
<tr>
<td>Engineering</td>
<td>e3</td>
<td>engineering data following mission abort</td>
</tr>
<tr>
<td>Engineering</td>
<td>e5</td>
<td>engineering data BIT test</td>
</tr>
<tr>
<td>Argo Data</td>
<td>f0</td>
<td>Mission parameter list</td>
</tr>
<tr>
<td>Test pattern</td>
<td>f1</td>
<td>ID reserved, format not yet defined</td>
</tr>
</tbody>
</table>
GPS data (ID=0x00, 0x01, 0x02, 0x03, 0x05)

The LS nibble of the ID indicates in what phase of the mission the fix was taken. The remainder of the data is the same for all mission phases. The length of GPS data is in bytes 1 and 2. GPS fix data starts in byte 3:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Mission phase:</td>
</tr>
<tr>
<td></td>
<td>0 = 1st diagnostic dive at the start of a mission</td>
</tr>
<tr>
<td></td>
<td>1 = beginning of normal dive cycle (just before leaving surface)</td>
</tr>
<tr>
<td></td>
<td>2 = end of a normal dive cycle</td>
</tr>
<tr>
<td></td>
<td>3 = following mission abort</td>
</tr>
<tr>
<td></td>
<td>5 = during BITest</td>
</tr>
<tr>
<td>1-2</td>
<td>Number of bytes in the message, 24 = 0x18 with the format as described here</td>
</tr>
<tr>
<td>3</td>
<td>0 if fix is invalid, +2 if longitude is East, -2 if longitude is West</td>
</tr>
<tr>
<td>4-7</td>
<td>Signed latitude degrees * 1e7</td>
</tr>
<tr>
<td>8-11</td>
<td>Signed longitude degrees * 1e7 range (+180 to -180 degrees)</td>
</tr>
<tr>
<td>12-13</td>
<td>GPS week</td>
</tr>
<tr>
<td></td>
<td>(traditional GPS week =0 to 1023 in LS 10 bits; rollover fix in MS 6 bits)</td>
</tr>
<tr>
<td>14</td>
<td>GPS day of week, 0=Sunday, 6=Saturday</td>
</tr>
<tr>
<td>15</td>
<td>UTC hour</td>
</tr>
<tr>
<td>16</td>
<td>UTC minutes</td>
</tr>
<tr>
<td>17</td>
<td>Time to get fix = (seconds to get fix)/10 , range 0 to 255 = 0 to 2550 seconds</td>
</tr>
<tr>
<td>18</td>
<td>Number of satellites used in fix</td>
</tr>
<tr>
<td>19</td>
<td>Minimum signal level</td>
</tr>
<tr>
<td>20</td>
<td>Average signal level</td>
</tr>
<tr>
<td>21</td>
<td>Maximum signal level</td>
</tr>
<tr>
<td>22</td>
<td>10*Horiz. dilution of precision</td>
</tr>
<tr>
<td>23</td>
<td>; terminator (0x3B)</td>
</tr>
</tbody>
</table>

Pressure data (ID=0x10)
Temperature data (ID=0x20)
Salinity/Conductivity data (ID=0x30)
Time data (ID=0x70)

Profile data from the pressure, temperature, and salinity sensors are all processed in the same way and the message format differs only in the ID code. The SeaBird CTD takes a profile as the Deep SOLO descends and stores the values internally. When the Deep SOLO reaches the surface/park pressure, it takes the continuously sampled data (0-2000dbar, deep cutoff of binned pressure is modifiable) from the CTD and block averages it in depth into PRO_BINS (=1000) bins. Data sampled deeper than 2000dbar is recorded in spot sampled mode and returned in different messages. Time of the spot sampled data is also returned.

The size of depth bins can vary with depth. The averaging scheme is determined by 5 parameters: BLOK, PB1, PB2, AV1, and AV2. The smallest bin size is BLOK decibars. Bins 0 thru PB1-1 have a vertical extent of BLOK decibars. Bins PB1 thru PB2-1 are AV1*BLOK decibars tall while bins PB2 thru PRO_BINS-1 are AV2*BLOK decibars. In the special case that PB1 \(\geq\) PRO_BINS, then all of the bins are BLOK decibars in extent, and the values of PB2, AV1, and AV2 are ignored.

The data series from all channels are processed in the same way and are synchronous with each other. Each depth series is broken into sub-blocks of 25 samples, and a first-differencing method is applied to each sub-block to reduce the number of bytes required to transmit the data. Because the data series will generally be longer than the 189 bytes available in a 9601 SBD message, it is divided into multiple messages. Each message has an integral number of sub-blocks in it. The final sub-block of the time series may have fewer than 25 samples in it. The data message looks like:
IDjj<sub-block 0><sub-block 1> . . . <sub-block m>;

ID = one-byte sensor ID code and index. The low order hex digit is the message index for this sensor. For example, the pressure messages would have ID's:10,11,12...
jj = Number of bytes for this message. The count includes ID, jj, the data, and the trailing ;. The count is in 2 binary bytes with MSB first and LSB second.

<sub-block i> = first-differenced data from the ith sub=block where i=1,...,m =number of sub-blocks. If i<m, the sub-block will have 25 values in it and will have a total length of 22 bytes. The mth sub-block will have between 1 and 25 values and a length between 3 and 27 bytes.

Suppose a sub-block has the n values v[0], v[1],...v[n-1]. Then this sub-block will be transmitted as:

<table>
<thead>
<tr>
<th>Sub-block Byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>one-byte scaling factor S, range = 1 to 255. S is chosen so that the scaled first-differences fit in one byte, i.e. $</td>
</tr>
<tr>
<td>1</td>
<td>MS byte of $v[0]$</td>
</tr>
<tr>
<td>2</td>
<td>LS byte of $v[0]$</td>
</tr>
<tr>
<td>3</td>
<td>LS byte of $\left{ v[1] - v[0] \right}/S$</td>
</tr>
<tr>
<td>4</td>
<td>LS byte of $\left{ v[2] - v[1] \right}/S$</td>
</tr>
<tr>
<td>...</td>
<td></td>
</tr>
<tr>
<td>n+1</td>
<td>LS byte of $\left{ v[n-1] - v[n] \right}/S$</td>
</tr>
</tbody>
</table>

The pressure series will have gaps in it if there is no valid CTD data in a block. In that case, all of the profile series will be missing the same gap. If a block average contains no valid data, that block is ignored and is not transmitted. For example, suppose the pressure bin size is 1 db and that bin 0 has $P=0$. Suppose there is no valid data in bin 5. Then the sub-block will contain:

```
1 0000 01 01 01 01 02 01 ... ^ ^ ^ ^ ^ ^ ^
| | | | | | + P=0007
| | | | | + P=0006
| | | | + P=0003
| | + P=0002
| + P=0001
| + P=0000
```

Note that the 6th bin, for which $P=5$, will be omitted from the pressure, temperature, and salinity messages.

Each sub-block requires n+2 bytes so the longest sub-block uses 27 bytes. If each sensor has 1000 blocks then it will require 50 sub-blocks, each with 27 bytes. 8 sub-blocks will fit into each message (189/22) so 7 messages are needed per sensor. The total bytes then is $50 \times 22 + 7 \times 16$ which equals 1212. Thus a CTD profile with 1000 blocks can be sent in $3 \times 1212 = 3636$ bytes.

After the sub blocks have been reassembled into a sequence of observations, the counts are converted to scientific units by:

- $\text{dBar} = \text{pressure counts} \times 10^{-10}$
- $\text{degC} = \text{temperature counts} \times 10^{-5}$
- $\text{psu} = \text{salinity/conductivity counts} \times 10^{-1}$

NOTE: In ROM SBE603 09Jan13 there was an error in the Conductivity offset.. for a ll discrete measurement the offset used is 2..not 1 as reported by the float in the Argo meta data. Any measurements made in continuous sampling mode will use the correct offset.
The values of Gain/Offset are now sent back within the Argo Metafile message (0xf0) for data decoding purposes allowing a way to determine what Gain/offset is used in a given cycle.
High Resolution Pressure data (ID=0x90)
High Resolution Temperature data (ID=0xa0)
High Resolution Salinity/Conductivity data (ID=0xb0)

SOLOII/Deep SOLO has the ability to return a high resolution P,T,S/C profile spanning a subsection of the primary binned profile (upper 2000dbar). Data is packed and decoded similarly to the binned profile (ID=0x10, 0x20, 0x30). The High Resolution profile can return every scan of the CTD (1 Hz) or every other scan (1/2 Hz). The data is limited to 1024 values. [Note: When the High Resolution data is requested, the averaging of the primary binned profile must be done by the float (not within the CTD). Typical SOLOII/SOLO-D averaging uses every other CTD scan. However if the High Resolution profile includes every scan, the bin averages will also use every scan. Thus the averaging of the primary binned profile may differ between the subsection with High Resolution data and all other spans.

Fall Rate data (ID=0x40)

As it falls from the surface to its profile depth, Deep SOLO periodically interrogates the SeaBird for a depth reading. This time series is sent back in this data message for that portion of the profile that is bin-averaged. To record the pressure-time values during the discrete sampled profile, decode the pressure and time profile messages. As the float transitions to rising back towards drift depth, the float records a pressure-time pair at end of descent, and then any seeks that are necessary to get to drift depth.

The data message looks like:

```
IDjj<start_time><time(1),depth(1)> . . . <time(m),depth(m)>;
```

- **ID** = one-byte sensor ID code = 0x40.
- **jj** = Number of bytes in the message. The count includes ID, jj, the data, and the trailing ;. The count is in 2 binary bytes with MSB first and LSB second.
- **start_time** = SOLO time at start of fall (seconds since 1Jan2000) in 4 bytes (MSB first).
- **time(i)** = seconds since start_time in 2 bytes, i=1, ..., m.
- **depth(i)** = depth (LSB=0.1 db) at time(i) in 2 bytes, i=1, ..., m.

```
dBar = .1 * depth(i) -10
depth(i) = 0xffff if the pressure reading is invalid
```

Each depth observation takes 4 bytes. The first time is taken when the valve is opened to leave the surface. The next two times are when the float passes 50m and 100m. After 100 m, pressures are logged every 30 minutes. Typically we allow for 500 (Falln) minutes for the SOLOII to fall 1000 meters so there will be about 16 more measurements. The last record is at the 500 minute mark. The Deep SOLO logs values every <SkSLsc> s during the continuous-profile. Others are recorded at: the same time as the first spot sample; at the end of sink(); at the beginning of each seek(); and at the beginning of park().

Rise Rate data (ID=0x50)

The rise rate message is identical in structure to the fall rate message. For the SOLOII, the rise rate time series begins as its valve is opened to descend from the drift depth to the profile depth. It logs a pressure/time record 10 times during its descent to the profile depth (interval = PwaitN/10). At the bottom of dive, whether determined by timing out (exceeding PwaitN) or by reaching the target depth (ZproN), another pressure/time record is logged. At this point, the float pumps for PmpBtm seconds. A pressure/time record is logged every 30 minutes while the float is ascending.

For the Deep SOLO the rise rate time series begins at the end of park() (start of ascend()), sampling periodically (<AsSLsc>), until the surface is reached.
Pump data (ID=0x60)

The data message looks like:

```
IDjj< depth(1),time(1),voltage(1),current(1),vac0(1),vac1(1)> . . .
< depth(m),time(m),voltage(m),current(m),vac0(m),vac1(m);

ID   =   one-byte sensor ID code = 0x60.
jj   =   Number of bytes in the message.  The count includes ID, jj, the data, and the
trailing ;.  The count is in 2 binary bytes with MSB first and LSB second.
depth(i)   =   depth (LSB=0.04 db) at time(i) in 2 bytes,  i=1, ..., m.
    dBar =  .04 * depth(i) -10
    depth(i) = 0xffff if the pressure reading is invalid
time(i)   =   seconds the pump ran in 2 bytes (signed)
voltage(i) =   average pump battery counts while pumping in 2 bytes (0.01V)
current(i) =   average pump current at bottom in 2 bytes, LSB=1ma
vac0(i)   =   vacuum counts after pump starts in 1 byte
vac1(i)   =   vacuum counts before pump stops in 1 byte
```

Engineering data (ID=0xe0, 0xe2, 0xe3, 0xe5)

The engineering data is used to diagnose SOLOII/SOLO-D anomalies. A different format is used in each of the 3 distinct phases of a SOLOII/SOLO-D mission. The LS nibble of the ID indicates the phase of the mission.

<table>
<thead>
<tr>
<th>Byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ID/Mission phase:</td>
</tr>
<tr>
<td></td>
<td>0xe0 = 1st diagnostic dive at the start of a mission</td>
</tr>
<tr>
<td></td>
<td>0xe2 = end of a normal dive cycle</td>
</tr>
<tr>
<td></td>
<td>0xe3 = following mission abort</td>
</tr>
<tr>
<td></td>
<td>0xe5 = BITtest</td>
</tr>
<tr>
<td>1-2</td>
<td>Number of bytes in the message, depends on mission phase as described below</td>
</tr>
<tr>
<td>3 -> ??</td>
<td>Depends on mission phase as described below</td>
</tr>
</tbody>
</table>

ID=0xe0, Engineering message in 1st diagnostic dive at start of mission

<table>
<thead>
<tr>
<th>Byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ID/Mission phase = 0xe0</td>
</tr>
<tr>
<td>1-2</td>
<td>Number of bytes = 76= 0x4c</td>
</tr>
<tr>
<td>3</td>
<td>Engineering message version =3</td>
</tr>
<tr>
<td>4</td>
<td>#packets in current session</td>
</tr>
<tr>
<td>5-10</td>
<td>0 (dummy filler)</td>
</tr>
<tr>
<td>11-12</td>
<td>EP -> sattime</td>
</tr>
<tr>
<td>13-14</td>
<td>DP->Vcpu = CPU battery voltage counts 0.01V</td>
</tr>
<tr>
<td>15-16</td>
<td>DP->Vpmp = Pump battery counts at surface(0.01V)</td>
</tr>
<tr>
<td>17-18</td>
<td>DP->Vple = Pump battery counts at end of last pump(0.01V)</td>
</tr>
<tr>
<td>19-20</td>
<td>BTvac = pcase vacuum at beginning of BIT in 0.01 inHg</td>
</tr>
<tr>
<td>21-22</td>
<td>DP->Air[1] = vac before filling bladder at surface 0.01 inHg</td>
</tr>
<tr>
<td>23-24</td>
<td>DP->Air[2] = vac after filling bladder at surface 0.01 inHg</td>
</tr>
<tr>
<td>25-26</td>
<td>DP->ISRID = i.d. of last interrupt</td>
</tr>
<tr>
<td>27-28</td>
<td>DP->HPavgI = average pump current at bottom, LSB=1ma</td>
</tr>
<tr>
<td>29-30</td>
<td>DP->HPmaxI = maximum pump current at bottom, LSB=1ma</td>
</tr>
<tr>
<td>31-32</td>
<td>Total seconds pumped to surface</td>
</tr>
<tr>
<td>33-34</td>
<td>Seconds pumped at Surface</td>
</tr>
<tr>
<td>35-36</td>
<td>DP->P[5] = surf press counts @ end of ASCEND (LSB=.04dBar)</td>
</tr>
<tr>
<td>37-38</td>
<td>SPRX = Surf press before resetoffset (pertains to prev dive)</td>
</tr>
<tr>
<td>39-40</td>
<td>SPRXL = press after resetoffset (pertains to prev dive)</td>
</tr>
<tr>
<td>41-42</td>
<td>diagP[0] = Press when "in water" sensed</td>
</tr>
</tbody>
</table>
```
43-44 diagT[0] = Temp when "in water" sensed
45-46 diagS[0] = Salinity when "in water" sensed
47-48 SBnscan = # scans recorded by SBE
   // -1 (0xffff) indicates unable to get scan count from SBE
   // -2 (0xfffe) indicates SBE never started so SBE didn't reset
   // scan count before returning an old value
49-50 Compacted SBntry,SBstrt,SBstop status (see misspec.h):
   ((DP->SBntry&0xf)<<4) | ((DP->SBstrt&0x3)<<2) | (DP->SBstop&0x3)      
51-52 diagP[1]  = Shallowest press in profile
53-54 diagT[1] = Shallowest Temp in profile
55-56 diagS[1] = Shallowest Salinity in profile
57-58 BTvac = BIT vacuum in 0.01 inHg
59-60 BTPcur = BIT motor current OUT, LSB=1mA
61-62 BTPsec = BIT Pump seconds
63  BTPvac[0] = BIT Pump vacuum at beginning of test, before pumping
64  BTPvac[1] = BIT Pump vacuum after pumping
65-66 BTVPте = BIT pump batt 0.01V
67-68 BTVCpu= BIT CPU batt 0.01V
69-70 exception flags (Not defined in 0xe0)
71  vent data; MSB=#0.1 seconds vent motor ran
72  LSB LLD status before/after vent ran
73-74 AbrtCd = code for what caused abort_miss
75  ; terminator

ID=0xe2, Engineering message in normal dive cycle

<table>
<thead>
<tr>
<th>Byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ID/Mission phase = 0xe2</td>
</tr>
<tr>
<td>1-2</td>
<td>Number of bytes = 98 = 0x62</td>
</tr>
<tr>
<td>3</td>
<td>Engineering message version =3</td>
</tr>
<tr>
<td>4</td>
<td>#packets sent in current surface session</td>
</tr>
<tr>
<td>5-6</td>
<td>#tries to connect in previous surface session</td>
</tr>
<tr>
<td>7-8</td>
<td>parse_X_reply status in previous surface session</td>
</tr>
<tr>
<td>9-10</td>
<td>ATSBD return status in previous surface session</td>
</tr>
<tr>
<td>11-12</td>
<td>EP-&gt;sattime Seconds taken in previous surface session to send all SBD messages</td>
</tr>
<tr>
<td>13-14</td>
<td>DP-&gt;Vcpu = CPU battery voltage counts 0.01V</td>
</tr>
<tr>
<td>15-16</td>
<td>DP-&gt;Vpmp = Pump battery counts at surface(0.01V)</td>
</tr>
<tr>
<td>17-18</td>
<td>DP-&gt;Vple = Pump battery counts at end of last pump(0.01V)</td>
</tr>
<tr>
<td>19-20</td>
<td>DP-&gt;Air[0] = pcase vac during sinking @50db with oil all inside pcase ,0.01 inHg</td>
</tr>
<tr>
<td>21-22</td>
<td>DP-&gt;Air[1] = pcase vac before filling oil bladder at surface 0.01 inHg</td>
</tr>
<tr>
<td>23-24</td>
<td>DP-&gt;Air[2] = pcase vac after filling bladder at surface 0.01 inHg</td>
</tr>
<tr>
<td>25-26</td>
<td>DP-&gt;ISRID = i.d. of last interrupt</td>
</tr>
<tr>
<td>27-28</td>
<td>DP-&gt;HPavgl = average pump current at bottom, LSB=1ma</td>
</tr>
<tr>
<td>29-30</td>
<td>DP-&gt;HPmaxl = maximum pump current at bottom, LSB=1ma</td>
</tr>
</tbody>
</table>

For Deep SOLO, HPmaxl=0 as dummy-fill

31-32 Total seconds pumped to surface
33-34 Seconds pumped at Surface
35-36 SPRX = Surf press before resetoffset (pertains to prev dive)
37-38 SPRXL = press after resetoffset (pertains to prev dive)
39-40 diagP[0] = Pressure before pumping for ascent
41-42 diagT[0] = Temp before pumping for ascent
43-44 diagS[0] = Salinity before pumping for ascent
45-46 diagP[1] = Last (shallowest) Pressure scan on ascent
47-48 diagT[1] = Last (shallowest) Temperature scan on ascent
49-50 diagS[1] = Last (shallowest) Salinity scan on ascent
51-52 SBnbad = # bad bins from SBE
53-54 SBnscan = # scans recorded by SBE
   // -1 (0xffff) indicates unable to get scan count from SBE
```
// -2 (0xfffe) indicates SBE never started so SBE didn't reset
// scan count before returning an old value

Compacted SBntry,SBstrt,SBstop status (see misspec.h):
((DP->SBntry&0xf)<<4) | ((DP->SBstrt&0x3)<<2) | (DP->SBstop&0x3)

DP->P[0] = press counts before begin of FALL (LSB=.04dBar)
DP->P[1] = press counts at end of FALL (LSB=.04dBar)
DP->P[3] = press counts at end of DRIFT (LSB=.04dBar)
DP->P[5] = surf press counts @ end of ASCEND (LSB=.04dBar)
DP->PAVG[0] = average pressure over first half of DRIFT
DP->PAVG[1] = average pressure over second half of DRIFT
DP->TAVG[0] = average temperature over first half of DRIFT
DP->TAVG[1] = average temperature over second half of DRIFT
DP->SAVG[0] = average salinity over first half of DRIFT
DP->SAVG[1] = average salinity over second half of DRIFT
DP->fall_time = seconds from open air valve to end of settle
DP->fall rate = avg mm/sec while sinking
DP->SeekT = seconds pumped in 1st settle to drift
DP->SeekP = change of depth (signed 0.1 dbar in 1st settle)

exception flags (can be added)
0x0001 Valve failed to open
0x0002 Valve failed to close
0x0004 Questionable pressure
0x0008 Antenna was toggled
0x0010 Antenna switch failure. (no satellites even after toggling)
0x0020 GPS communication error (cannot talk to GPS unit)
0x0080 Float took too long to leave the surface. (toggled valve)
0x1000 Valve failure during Sink phase of mission
0x2000 Valve failure during Ascend phase of mission

vent data; # 0.1 seconds vent motor ran
vent data; LLD status before and after vent ran
SBE P offset(*800)
PP->SeekSc; tenths of seconds pumped to target depth
Number of Packets sent in previous cycle
ID=0xe3, Engineering message following mission abort

<table>
<thead>
<tr>
<th>Byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ID/Mission phase = 0xe3</td>
</tr>
<tr>
<td>1-2</td>
<td>Number of bytes = 30 = 0x1e</td>
</tr>
<tr>
<td>3</td>
<td>Engineering message version = 3</td>
</tr>
<tr>
<td>4</td>
<td>#packets sent in current surface session</td>
</tr>
<tr>
<td>5-6</td>
<td>#tries to connect in last surface session</td>
</tr>
<tr>
<td>7-8</td>
<td>parse_X_reply status in last surface session</td>
</tr>
<tr>
<td>9-10</td>
<td>ATSBD return status in last surface session</td>
</tr>
<tr>
<td>11-12</td>
<td>Seconds taken in sending last SBD message</td>
</tr>
<tr>
<td>13-14</td>
<td>current CPU battery voltage counts 0.01V</td>
</tr>
<tr>
<td>15-16</td>
<td>current pump battery counts 0.01V</td>
</tr>
<tr>
<td>17-18</td>
<td>DP -> Air[1] = pcase vacuum at beginning of abort 0.01inHg</td>
</tr>
<tr>
<td>19-20</td>
<td>DP -> Air[0] = pcase vacuum at end of last xmit (previous cycle) 0.01 inHg</td>
</tr>
<tr>
<td>23-24</td>
<td>DP -> ISRID = i.d. of last interrupt</td>
</tr>
<tr>
<td>25-26</td>
<td>AbrtCd = code for what caused abort_miss</td>
</tr>
<tr>
<td></td>
<td>0 = no error</td>
</tr>
<tr>
<td></td>
<td>1 = current time is later than RTCabort</td>
</tr>
<tr>
<td></td>
<td>2 = unable to WakeOST</td>
</tr>
<tr>
<td></td>
<td>3 = unable to send Dive number to SOLO II (LOdiveNo)</td>
</tr>
<tr>
<td></td>
<td>4 = Iridium ground station commanded to go to abort</td>
</tr>
<tr>
<td></td>
<td>5 = FnDiv was completed. Mission is done</td>
</tr>
<tr>
<td></td>
<td>6 = Diagnostic dive failed to get GPS fix, pressure never>dBarGo, or unable to send message to Iridium</td>
</tr>
<tr>
<td></td>
<td>7 = pressure sensor failure</td>
</tr>
<tr>
<td>27-28</td>
<td>Empty</td>
</tr>
<tr>
<td>29</td>
<td>; terminator</td>
</tr>
</tbody>
</table>

ID=0xe5, Engineering message following BITest

<table>
<thead>
<tr>
<th>Byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ID/Mission phase = 0xe5</td>
</tr>
<tr>
<td>1-2</td>
<td>Number of bytes = 58 = 0x3a</td>
</tr>
<tr>
<td>3</td>
<td>Engineering message version = 3</td>
</tr>
<tr>
<td>4</td>
<td>#packets sent in this surface session</td>
</tr>
<tr>
<td>5-6</td>
<td>SBE P Offset(*800)</td>
</tr>
<tr>
<td>7-8</td>
<td>CPU battery voltage 0.01 V</td>
</tr>
<tr>
<td>9-10</td>
<td>no load pump battery voltage 0.01 V</td>
</tr>
<tr>
<td>11-12</td>
<td>pump battery voltage counts at end of last pump (0.01V)</td>
</tr>
<tr>
<td>13-14</td>
<td>DP -> HPavgl = average pump current at bottom, LSB=1ma</td>
</tr>
<tr>
<td>15-16</td>
<td>seconds pumped out during test</td>
</tr>
<tr>
<td>17</td>
<td>Oil vacuum before filling bladder 0.01 inHG</td>
</tr>
<tr>
<td>18</td>
<td>Oil vacuum after filling bladder 0.01 inHG</td>
</tr>
<tr>
<td>19-20</td>
<td>DP -> Air[0] = Pcase Vacuum at beginning of BIT, (Oil Bladder Empty) 0.01 inHg</td>
</tr>
<tr>
<td>21-22</td>
<td>DP -> Air[1] = Pcase Vacuum at end of BIT with air bladder inflated. 0.01 inHg</td>
</tr>
<tr>
<td>23</td>
<td>Number of tries needed to open valve</td>
</tr>
<tr>
<td>24</td>
<td>Number of tries to close valve</td>
</tr>
<tr>
<td>25-26</td>
<td>i.d. of last interrupt</td>
</tr>
<tr>
<td>27-56</td>
<td>string returned from SBE pt command</td>
</tr>
<tr>
<td>57</td>
<td>; terminator</td>
</tr>
</tbody>
</table>
Mission EEPROM dump (ID=0xd0)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ID/Mission phase = 0xd0,0xd1,0xd2</td>
</tr>
<tr>
<td>1-2</td>
<td>(\text{len} = \text{Number of bytes (variable, see below)})</td>
</tr>
<tr>
<td>3- (len-2)</td>
<td>ASCII listing of mission parameters</td>
</tr>
<tr>
<td></td>
<td>Each EEPROM parameter has a 6 character name and 5 char value:</td>
</tr>
<tr>
<td></td>
<td>(\text{NAMExx=vvvvv})</td>
</tr>
<tr>
<td></td>
<td>The (=) & | signs are present in the listing of each parameter. (15 bytes/parameter)</td>
</tr>
<tr>
<td>len-1</td>
<td>Successive parameters follow without gaps.</td>
</tr>
</tbody>
</table>

A example showing only the initial 3 and final 2 elements follows:

\[
PchSec = -1|MaxHrs= 1440|dBarGo= -1|... \quad \text{DATtry} = -1|\text{DATsec} = -1|;
\]

The EEPROM dump message is sent only in response to a command "P" from the ground station. It is sent over 3 SBD messages.

Argo Data ID=0xf0 Relayed in normal cycles

<table>
<thead>
<tr>
<th>Byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ID/Mission phase = 0xf0</td>
</tr>
<tr>
<td>1-2</td>
<td>Number of bytes = 37 = 0x25</td>
</tr>
<tr>
<td>3</td>
<td>Data Version (Minor version in high order nibble, major version in low order)</td>
</tr>
<tr>
<td>4-5</td>
<td>Target profile depth</td>
</tr>
<tr>
<td>6-7</td>
<td>Target parking depth</td>
</tr>
<tr>
<td>8-9</td>
<td>Maximum rise time in minutes</td>
</tr>
<tr>
<td>10-11</td>
<td>Target (maximum) fall to parking depth time in minutes</td>
</tr>
<tr>
<td>12-13</td>
<td>Maximum fall-from-parking-to-profile-depth time in second [Always 0 for Deep Solo]</td>
</tr>
<tr>
<td>14-15</td>
<td>Target drift time in minutes</td>
</tr>
<tr>
<td></td>
<td>(16) Float version (1 for Deep SOLO)</td>
</tr>
<tr>
<td></td>
<td>(17) Target ascent rate while profiling (cm/s)</td>
</tr>
<tr>
<td>18-19</td>
<td>Number of seeks</td>
</tr>
<tr>
<td>20-21</td>
<td>Surface Time in minutes</td>
</tr>
<tr>
<td>22-23</td>
<td>Seek Interval in minutes</td>
</tr>
<tr>
<td>24-25</td>
<td>Pressure Gain to unpack profile</td>
</tr>
<tr>
<td>26-27</td>
<td>Pressure Offset to unpack profile</td>
</tr>
<tr>
<td>28-29</td>
<td>Temperature Gain to unpack profile</td>
</tr>
<tr>
<td>30-31</td>
<td>Temperature Offset to unpack profile</td>
</tr>
<tr>
<td>32-33</td>
<td>Salinity/Conductivity Gain to unpack profile</td>
</tr>
<tr>
<td>34-35</td>
<td>Salinity/Conductivity Offset to unpack profile</td>
</tr>
<tr>
<td>36</td>
<td>; terminator</td>
</tr>
</tbody>
</table>

Test Data (ID=0xf1)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ID/Mission phase = 0xf1</td>
</tr>
<tr>
<td>1-2</td>
<td>Number of bytes = variable</td>
</tr>
<tr>
<td>3</td>
<td>modulo</td>
</tr>
<tr>
<td>4-n</td>
<td>test data</td>
</tr>
</tbody>
</table>

NOTE: In ROM? there was an error in the Conductivity offset...it is 2...not 1 as reported by the float.

Note: In V0.1, the ability to modify gain/offset values was introduced. However, offset values CANNOT be modified. The float firmware is locked to the SBE default offsets. Gain can be modified.