! jnl file that uses Argo data to make potential density time series anomaly plots. The anomaly is from the yearl average. ! This file requires input arguments for the time range, dynamic height levels and lat/lon range ! to run the program in ferret, you will need to type the following line with the various values filled in: ! go fer_podens_time_series_yearly_anom time_start time_end depth_min depth_max lat_min lat_max lon_min lon_max con_lev ! If you choose not to give values for the various variables, default ones will be substituted for you. ! If you only want to choose some values, you can, but you cannot skip any values. This means you can ! fill in the first 2 and no others, or if you want to specify the lat/lon ranges, you must fill in values ! for the first 4 variables as well as the lat/lon ranges. ! depth values are entered in the range of 0 to 2000dbar ! time values are entered corresponding to monthly values starting with Jan, 2004 ! con_lev sets the contour and fill levels of the plot. This is done in the following format: (lo,hi,delta). ! More than one can be chosen: (lo,mid,delta1),(mid,hi,delta2). See the Ferret Users Manual for more information. ! if no values are entered, the default region is 50S to 25N and 130E to 250E with an average over the ! time region and 0 to 1000dbar cancel/all data cancel/all var cancel/all sym set mem/size=80 set window/clear go set_pixel_size 1024 768 ! assigning variables to arguments passed in the go command as well as default values let lat_min=`$5%-50%` let lat_max=`$6%-45%` let lon_min=`$7%130%` let lon_max=`$8%130%` let depth_min=`$3%0%` let depth_max=`$4%1000%` let time_start=`$1%1%` let time_end=`$2%36%` set mode interpolate set region/z=`depth_min`:`depth_max`/y=`lat_min`:`lat_max`/x=`lon_min`:`lon_max` define viewport/xlim=.0,.95/ylim=0,1 top PPL DFLTFNT DR ppl conpre @P1@DR ppl axlsze 0.15,.15 ppl axset 1,1,1,1 ppl pen 0,7 ppl pen 1,7 ppl labset .15,.15,.15 ! load data use RG_ArgoClim_Full.nc let temp=ARGO_TEMPERATURE_MEAN[d=1]+ARGO_TEMPERATURE_ANOMALY[d=1] let psal=ARGO_SALINITY_MEAN[d=1]+ARGO_SALINITY_ANOMALY[d=1] ! calculate dynamic height let dyn_s=psal[d=1] let dyn_t=temp[d=1] let dyn_p=z[d=1,g=`temp, return=grid`] go dynamic_height let dens=rho_un(dyn_s,dyn_t,dyn_p) let potemp=THETA_FO(dyn_s,dyn_t,dyn_p,0) let podens=rho_un(dyn_s,potemp,0.)-1000 ! Ensuring longitudes are properly plotted let boundb=if (`lon_min`) gt (`lon_max`) then 1 else 0 if `boundb` then let lon_max=`lon_max`+360 endif ! begin mapping process ! potential density can only be plotted if the depths are different. ! only lat is the same let a=if (`lat_min`) eq (`lat_max`) and (`lon_min`) ne (`lon_max`) then 1 else 0 if `a` then let podens_time_anom= podens[x=`lon_min`:`lon_max`@ave,y=`lat_min`,z=`depth_min`:`depth_max`,l=`time_start`:`time_end`] -podens[x=`lon_min`:`lon_max`@ave,y=`lat_min`,z=`depth_min`:`depth_max`,l=1:60@ave] endif ! only lon is the same let b=if `lon_min` eq `lon_max` and `lat_min` ne `lat_max` then 1 else 0 if `b` then let podens_time_anom= podens[x=`lon_min`,y=`lat_min`:`lat_max`@ave,z=`depth_min`:`depth_max`,l=`time_start`:`time_end`]-podens[x=`lon_min`,y=`lat_min`:`lat_max`@ave,z=`depth_min`:`depth_max`,l=1:60@ave] endif ! lat and lon are the same let c=if `lon_min` eq `lon_max` and `lat_min` eq `lat_max` then 1 else 0 if `c` then let podens_time_anom= podens[x=`lon_min`,y=`lat_min`,z=`depth_min`:`depth_max`,l=`time_start`:`time_end`] -podens[x=`lon_min`,y=`lat_min`,z=`depth_min`:`depth_max`,l=1:60@ave] endif ! both are different let d=if `lon_min` ne `lon_max` and `lat_min` ne `lat_max` then 1 else 0 if `d` then let podens_time_anom= podens[x=`lon_min`:`lon_max`@ave,y=`lat_min`:`lat_max`@ave,z=`depth_min`:`depth_max`,l=`time_start`:`time_end`] -podens[x=`lon_min`:`lon_max`@ave,y=`lat_min`:`lat_max`@ave,z=`depth_min`:`depth_max`,l=1:60@ave] endif let anom_max=podens_time_anom[l=@max,z=@max] let anom_min=podens_time_anom[l=@min,z=@min] let abs_max=ABS(`anom_max`) let abs_min=ABS(`anom_min`) ! case where anom_max is bigger than anom_min let maxz=if `abs_max` gt `abs_min` and `abs_max` lt 1 then 1 else 0 if `maxz` then let lev_max = (int(10*abs_max)+1)/10 let lev_min = (int(-10*abs_max)-1)/10 endif let maxnz=if `abs_max` gt `abs_min` and `abs_max` gt 1 then 1 else 0 if `maxnz` then let lev_max=(int(anom_max)+1) let lev_min=(int((-1*anom_max))-1) endif let anom_diff=lev_max-lev_min let anom_delta=anom_diff/8 ! case where anom_min is bigger than anom_max let minz=if `abs_min` gt `abs_max` and `abs_min` lt 1 then 1 else 0 if `minz` then let lev_max = (int(10*abs_min)+1)/10 let lev_min = (int(10*anom_min)-1)/10 endif let minnz=if `abs_min` gt `abs_max` and `abs_min` gt 1 then 1 else 0 if `minnz` then let lev_max=(int(abs_min)+1) let lev_min=(int(anom_min)-1) endif let anom_diff=lev_max-lev_min let anom_delta=anom_diff/8 let con_lev= $9&"(`lev_min`,`lev_max`,`anom_delta`)"|*>"*"& fill/nolab/pal=centered/set/lev="`con_lev`" podens_time_anom ppl ylab Pressure(dbar) ppl shakey 1,1,.08,0,5,9,,,, ppl fill ! adding contours con/set_up/over/nolab/lev="`con_lev`" podens_time_anom ppl conset .11,,,,,,,5.7,1.,1 ppl contour/overlay say Plot is finished say To adjust parameters, use the command line to pass arguments say For this file, the form to pass arguments is say go fer_podens_time_series_yearly_anom time_start time_end depth_min depth_max lat_min lat_max lon_min lon_max con_lev