
Format of SOLOII X messages: Argo Version Manual/Decoder V2.3
latest update: 12 Jul 2017

[For ROM SBE602 15Feb17]

An X message is used to transfer data from ISU to GS (ground station) or from GS to ISU. The data is assumed
to be binary and each byte can have any value from 0x00 to 0xff. The format of the message is the same
regardless of direction of transmission:

Xnnmmddp<data>$cc>
X = the character X

nn = number of data characters in the message following after nn. The count does
not include X ,nn, or anything from $ to the end >. The count is in 2 binary
bytes with MSB first and LSB second.

mm = serial number of SOLOII. The SN is in 2 binary bytes with MSB first and LSB
second.

dd = the dive number in 2 binary bytes with MSB first and LSB second.
: Dive number begins at -1 for the start-up, increments to 0 for the test dive,
increments +1 for all normal' (0xE2) dives.

p = one-byte packet ID index, range 0 to 255. Used to identify multiple X messages
within a dive cycle.The data for each dive cycle starts with p=0.

<data> = binary data characters. The length of <data> = nn -5. The contents of the
<data> section is described below.

$ = a dollar sign delimitor at start of the checksum
cc = the 8 bit byte-wise checksum from X to the byte preceding the $. The 8 bit sum

is coded as 2 4bit nibbles. The binary value of a nibble is converted to a visible
character by adding 0x30. Thus a value of 0x0 -> 0x30 = character '0', 0x1 ->
0x31 = '1', 0xe -> 0x3e = '>' , and 0xf -> 0x3f = '?'.

> = a > delimitor at end of checksum which also serves as a prompt to GS that the
ISU is done transmitting and that the GS may now transmit to ISU.

The remainder of this document describes the format of the <data> portion of the message sent from SOLOII to
the ground station (GS). The format of commands from GS sent to SOLOII will be described in another
document.

Highlights in document
Fields that are moved relative to the previous float version are highlighted in cyan
New fields relative to the previous version are highlighted in yellow

NOTE: For firmware including and later than V1.5: An ice detection algorithm was introduced. However, for the
float to be able to use the algorithm, the Seabird CTD must be a SBE41CP-V3.0C. SBE41CP-V3.0A, does not
contain the necessary commands. Thus not all floats may have operational ice detection due to hardware.

BUGS:
For firmware 15Feb17, the Voltage and Current are bad within the pump message for 'short' pumps. This
includes the pump at 100dbar (code=2), Seeks (code=3), and other seeks during drift and falling (codes 4, 5, 10
and 12).

The <data> section contains information from multiple sensors. Data from successive sensors are separated by
a semicolon (';' = 0x 3b); the final sensor is terminated by a ';' (immediately preceding the $ delimitor).

IDjj<sensor_data>;
ID = one-byte sensor ID code.

jj = Number of bytes for this sensor. The count includes ID, jj, and the trailing ;.
The count is in 2 binary bytes with MSB first and LSB second.

 <sensor_data> = binary data characters. The length of <sensor_data> = jj-4 bytes, and its
contents are described below for each sensor.

; = delimitor at the end of each sensor's data.

The ID byte is divided into two 4-bit nibbles. The MS nibble identifies the sensor and the second nibble specifies
the message number for that sensor. For example, the ID for first Pressure message is 0x10, the second is
0x11, the third 0x12, etc.

Sensor ID byte(hex)
GPS 00 fix at end of first diagnostic dive at start of mission
GPS 01 fix at before leaving surface
GPS 02 fix at end of normal profiling acsent
GPS 03 fix following mission abort
GPS 05 fix during BITest

Pressure 1x depths of CTD readings
Temperature 2x depth series of temperature

Salinity 3x depth series of salinity
Fall Rate 4x series of time,depth during SOLO II downward profile

Rise Rate 5x series of time,depth from drift depth to surface
Pump Series 6x pressure,time, voltage,current,vacuum for each pump

High Resolution Pressure 9x High Resolution Pressure [x=0-7]
High Resolution Temperature ax High Resolution Temperature [x=0-7]

High Resolution Salinity bx High Resolution Salinity [x=0-7]
Drift Profile Pressure 9x Drift profile of Pressure [x=8-F]

Drift Profile Temperature ax Drift profile of Temperature [x=8-F]
Drift Profile Salinity bx Drift profile of Salinity [x=8-F]
Mission EEPROM dx ASCII dump of mission parameters in EEPROM

Engineering e0 diagnostic data in first diagnostic dive
Engineering e2 engineering data in normal profiling dive
Engineering e3 engineering data following mission abort
Engineering e5 engineering data BIT test pass
Engineering e6 engineering data BIT test failure

Argo Data f0 Mission parameter list
Test pattern f1 ID reserved, format not yet defined

GPS data (ID=0x00, 0x01, 0x02, 0x03, 0x05)

The LS nibble of the ID indicates in what phase of the mission the fix was taken. The remainder of the data is
the same for all mission phases. The length of GPS data is in bytes 1 and 2. GPS fix data starts in byte 3:

Byte Contents
0 Mission phase:

0 = 1st diagnostic dive at the start of a mission
1 = beginning of normal dive cycle (just before leaving surface)
2 = end of a normal dive cycle
3 = following mission abort
5 = during BITest

1-2 Number of bytes in the message, 24 = 0x18 with the format as described here
3 0 if fix is invalid, +2 if longitude is East, -2 if longitude is West

4-7 Signed latitude degrees * 1e7
8-11 Signed longitude degrees * 1e7 range (+180 to -180 degrees)

12-13 GPS week
(traditional GPS week =0 to 1023 in LS 10 bits; rollover fix in MS 6 bits)

14 GPS day of week, 0=Sunday, 6=Saturday
15 UTC hour
16 UTC minutes
17 Time to get fix = (seconds to get fix)/10 , range 0 to 255 = 0 to 2550 seconds
18 Number of satellites used in fix
19 Minimum signal level
20 Average signal level
21 Maximum signal level
22 10*Horiz. dilution of precision
23 ; terminator (0x3B)

Pressure data (ID=0x1n)
Temperature data (ID=0x2n)
Salinity data (ID=0x3n)

Profile data from the pressure, temperature, and salinity sensors are all processed in the same way and the
message format differs only in the ID code. The SeaBird CTD takes a profile as the SOLOII ascends and stores
the values internally. When SOLOII reaches the surface, it takes the data from the CTD and block averages it in
depth into PRO_BINS (= 1000) bins.

The size of depth bins can vary with depth. The averaging scheme is determined by 5 parameters: BLOK,
PB1, PB2, AV1, and AV2. The smallest bin size is BLOK decibars. Bins 0 thru PB1-1 have a vertical extent of
BLOK decibars. Bins PB1 thru PB2-1 are AV1*BLOK decibars tall while bins PB2 thru PRO_BINS-1 are
AV2*BLOK decibars. In the special case that PB1 >= PRO_BINS, then all of the bins are BLOK decibars in
extent, and the values of PB2, AV1, and AV2 are ignored.

There are two options for packing the Core (bin averaged) profile data. The packing used within the message
data stream is indicated via first nibble of the jj variable (see below).

1. Difference Packing (Standard to versions previous to V2.0, Optional in V2.0)

The data series from all channels are processed in the same way and are synchronous with each other. Each
depth series is broken into sub-blocks of 25 samples, and a first-differencing method is applied to each
sub-block to reduce the number of bytes required to transmit the data. Because the data series will generally be
longer than the 189 bytes available in a 9601 SBD message, it is divided into multiple messages. Each message
has an integral number of sub-blocks in it. The final sub-block of the time series may have fewer than 25
samples in it. The data message looks like:

 IDjj<sub-block 0><sub-block 1> . . . <sub-block m>;
ID = one-byte sensor ID code and index. The low order hex digit is the message

index for this sensor. For example, the pressure messages would have
ID’s:10,11,12…

jj = Profile Packing Format (MS nibble)/Number of bytes for this message (LS 3 nibbles).
Profile Packing Format = 0 for Legacy Diff. (backwards compatible), 1 for Curv.
Number of bytes count includes ID, jj, the data, and the trailing ;.

<sub-block i> = first-differenced data from the ith sub=block where i=1,..,m =number of
sub-blocks. If i<m, the sub-block will have 25 values in it and will have a total
length of 22 bytes. The mth sub-block will have between 1 and 25 values and a
length between 3 and 27 bytes.

Suppose a sub-block has the n values v[0], v[1],...v[n-1]. Then this sub-block will be transmitted as:

 Sub-block Byte Contents
0 one-byte scaling factor S, range = 1 to 255. S is chosen so that

the scaled first-differences fit in one byte, i.e. |diff| <= 127.
1 MS byte of v[0]
2 LS byte of v[0]
3 LS byte of { v[1] - v[0] }/S
4 LS byte of { v[2] - v[1] }/S

. . .
n+1 LS byte of { v[n-1] - v[n] }/S

Each sub-block requires n+2 bytes so the longest sub-block uses 27 bytes. If each sensor has 1000 blocks then
it will require 50 sub-blocks, each with 27 bytes. 8 sub-blocks will fit into each message (189/22) so 7 messages
are needed per sensor. The total bytes then is 50*22 +7*16 which equals 1212. Thus a CTD profile with 1000
blocks can be sent in 3*1212 = 3636 bytes.

2. Curvature Packing (New to V2.0 and later)

The packing routine is introduced to reduce the volume of transmitted data, primarily by allowing for variation in
the bytes alloted for the data. The bytes alloted will be constant within a 16 value sub-block, but will differ
between parameters and between sub-blocks of the same parameter.

 IDjjBNNVVVDDDpppppppppppp<sub-block 0><sub-block 1> . . . <sub-block sb>;
ID = one-byte sensor ID code and index. The low order hex digit is the

message index for this sensor. For example, the pressure messages
would have ID’s:10,11,12... and message index (m) of 0, 1, 2, ...

jj = Profile Packing Format (MS nibble)/Number of bytes for this message (LS 3 nibbles).
Profile Packing Format = 0 for Legacy Diff. (backwards compatible), 1 for Curv.
Number of bytes count includes ID, jj, the data, and the trailing ;.

B = count of first sub-block number in message, as 1 byte. For message index, m =0,
B=0, for succeeding messages m > 0, B > 0. The position (n) of the first value
recorded in a message (VVV) can be computed as TopIndx = m + B * 16,
where m is the message index.

NN = total number of values given in the message as 2 bytes.
VVV = v[n=TopIndx] first value as 3 binary bytes. In all messages greater than 1,

VVV will be the same value as the last value packed in the previous message.
Said another way, there is an overlap of 1 value between messages. This
allows an additional check on the validity of the data transmitted.

DDD = {v[n=TopIndx+1] - v[n=TopIndx]} first-differenced, second value as 3 bytes.
pppppppppppp = (12 bytes) packing factors for the sub-block second differences where

each 3 bits indicate the dynamic range for each sub-block. The packing factor
will be the number of nibbles needed to represent the dynamic range of the
variable. For example, if the range is from 7 to -7, then the value can be
expressed unambiguously using 1 nibble and the packing factor would be 1.
Using 12 bytes for the packing factors, there can be up to 32 sub-blocks, or 512
values if the packing factor is 1 (1 nibble). Unfilled factors are valued at 0.

<sub-block i> = { v[n+2+i*16] – 2*v[n+1+i*16] + v[n+i*16] }
where n=0,..,15 and i=1,..,sb =number of sub-blocks.

Each non-last sub-block (i=1:sb-1) will have 16 values in it and will have a total length of of 8 to 32 bytes. The
last sub-block (i=sb) will have between 1 and 16 values and a length between 1 and 32 bytes. Message index m
> 1 (example ID=11) overlap the previous message index m-1 by 1 value. Thus the VVV value in message index
m will be redundant with the last value from message index m-1. If all sub-blocks are full in message index m,
then the message contains values for index n = m + B * 16 through n = 1 + m + (B + sbm) * 16, where sbm is be
the number of sub-blocks in the message m.

Suppose sub-block i has n values v[2+i*16], v[3+ i*16],...v[n+2+i*16], and the packing factor = 2 Then this sub-
block will be transmitted as:

 Sub-block Byte Contents
0 v[2+i*16] – 2*v[1+i*16] + v[i*16]
1 v[3+i*16] – 2*v[2+i*16] + v[1+i*16]

....
n v[n+2+i*16] – 2*v[n+1+i*16] + v[n+i*16]

Within a message, the original values can then be reconstructed by (1) starting with DDD and doing a cumulative
sum of the entries for the sub- blocks, and then (2) using these values and starting with VVV doing a second
cumulative sum.

Missing Data

The profile series will have gaps in it if there is no valid CTD data in a block. In that case, all of the profile series
will be missing the same gap. If a block average contains no valid data, that block is ignored and is not
transmitted. For example, suppose the pressure bin size is 1 db and that bin 0 has P=0. Suppose there is no
valid data in bin 5. Then the sub-block will contain:

1 0000 01 01 01 01 02 01 ...
^ ^ ^ ^ ^ ^ ^ ^
| | | | | | | |
| | | | | | | + P=0007
| | | | | | + P=0006
| | | | | + P=0004
| | | | + P=0003
| | | + P=0002
| | + P=0001
| + P=0000

Note that the 6th bin, for which P=5, will be omitted from the pressure, temperature, and salinity messages.

Converting to scientific Units

After the sub blocks have been reassembled into a sequence of observations, the counts are converted to
scientific units by:

dBar = pressure counts *Pgain - Poff
degC = temperature counts *Tgain - Toff
psu = salinity counts *Sgain - Soff

The values of Gain/Offset are now sent back within the Argo Metafile message (0xf0) for data decoding
purposes allowing a way to determine what Gain/offset is used in a given cycle. The GAIN/OFFSET of
Temperature/Salinity/Pressure can be modified via 2-way communcation.
Modifying these parameters will effect all variables returned.

High Resolution Pressure data (ID=0x9n, n=0:7)
High Resolution Temperature data (ID=0xan, n=0:7)
High Resolution Salinity data (ID=0xbn, n=0:7)

The float can be set to return a high resolution P,T,S profile spanning a subsection of the primary binned profile.
Data is packed and decoded similarly to the binned profile (ID=0x1n, 0x2n, 0x3n). The High Resolution profile
can return every scan of the CTD (1 Hz) or every other scan (1/2 Hz). The data is limited to 1024 values. [Note:
Typical SOLO II controller averging uses every other CTD scan. However if the High Resolution profile includes
every scan, the bin averages will also use every scan. Thus the averaging of the primary binned profile may
differ between the subsection with High Resolution data and all other spans. If the Seabird does the binning, this
is not an issue (for V2.1 11Dec15 and later). High Resolution profile data is decoupled from BinMod and is set to
always use 'curvature packing'.

Drift Pressure timeseries data (ID=0x9n, n=8:f)
Drift Temperature timeseries data (ID=0xan, n=8:f)
Drift Salinity timeseries data (ID=0xbn, n=8:f)

The float can be set to return a timeseries of P,T,S recorded during the drift phase. Data is packed and decoded
similarly to the binned profile (ID=0x1n, 0x2n, 0x3n), thus no time information is returned. Time can be
estimated from the rise/fall records and the sampling interval of the drift data. The first value is taken a few
seconds after drift begins, while the last value is taken a few seconds before drift ends. Thus there should be
NsamX+1 values. The data is limited to 1024 values. Drift data is decoupled from BinMod and is set to always
use 'curvature packing'.

Fall Rate data (ID=0x4n)

As it falls from the surface to its drift depth, SOLOII periodically interrogates the SeaBird for a depth reading.
This time series is sent back in this data message.

The data message looks like:
IDjj<start_time><time(1),depth(1)> . . . <time(m),depth(m)>;

ID = one-byte sensor ID code = 0x4n.
jj = Fall Packing Format (MS nibble)/Number of bytes in the message (LS 3

nibbles). Fall Packing Format = 0 for Legacy 4 byte reporting (backwards
compatible), 1 for 5 byte reporting.The count includes ID, jj, the data, and the
trailing ;.

start_time = SOLO time at start of message (seconds since 1Jan2000) in 4 bytes (MSB
first). This will be start of Fall in ID=0x40.

time(i) = seconds since start_time in 2 bytes, i=1, ..., m.
 code(i) = Code representing float phase while data value recorded in 1 nibble, i=1, …, m.

Possible Phase codes values
START_OF_SINK =1,
Buoyancy at 100db =2,
SEEK =3,
BEGINNING_OF_DRIFT =4,
SEEK_DURING_DRIFT =5,
BEGINNING_OF_FALL_TO_PROFILE =6,
START_OF_RISE =7,
END_OF_RISE =8,
ICE_TURNAROUND =9,
SINKING =10,
DRIFTING =11,
FALLING_TO_PROFILE =12,
RISING =13,
SURFACE =14 ;

depth(i) = depth (LSB=Pgain db) at time(i) in 2.5 bytes, i=1, ..., m.
dBar = Pgain * depth(i) - Poff
depth(i) = 0xffff if the pressure reading is invalid

Each depth observation takes 5 bytes. The first time is taken when the valve is opened to leave the surface.
The next two times are when the float passes 50m and 100m. After 100 m, pressures are logged every 30
minutes. Typically we allow for 500 (Falln) minutes for the SOLOII to fall 1000 meters so there will be about 16
more measurements. The last record should be recorded when the float begins its park phase.

Fall Rate data can be found over multiple messages.

The float resets its clock using GPS typically, but can use Iridium time if GPS is unavailable. Any re-epoch of the
Iridium system will shift the reported time (after reset by Iridium) by 226492400 seconds.

Maximum of 240 Fall values can be transmitted in a given cycle.

Rise Rate data (ID=0x5n)

The rise rate message is identical in structure to the fall rate message. The rise rate time series begins when the
SOLO II opens its valve to descent from the drift depth to the profile depth. It logs a pressure/time record 10
times during its descent to the profile depth (interval = PwaitN/10). At the bottom of dive, whether determined by
timing out (exceeding PwaitN) or by reaching the target depth (ZproN), another pressure/time record is logged.
At this point, the float pumps for PmpBtm seconds. A pressure/time record is logged every 30 minutes while the
float is ascending. An additional Rise Rate record has been introduced in V2.0 which is measured AFTER
surface buoyancy pumping.

Rise Rate data can be found over multiple messages.
Note: There is a bug in the rise record data, when the ice-estimation routine is tripped. The bug leads to there
being multiple code=9 (Ice Turnaround), in the rise record. The first code=9 is valid, the rest are not.

Maximum of 240 Fall values can be transmitted in a given cycle.

Pump data (ID=0x6n)

The data message looks like:

IDjj< depth(1),time(1),voltage(1),current(1),vac0(1),vac1(1)> . . .
 < depth(m),time(m),voltage(m),current(m),vac0(m),vac1(m);

ID = one-byte sensor ID code = 0x6n.
jj = Pump Packing Format (MS nibble)/Number of bytes in the message (LS 3

nibbles). Pump Packing Format = 0 for Legacy 10 byte packing (backwards
compatible), 1 for 11 byte packing. The count includes ID, jj, the data, and the
trailing ;.

 code(i) = Code representing float phase in 1 nibble, i=1, …, m (See Fall for values).
depth(i) = depth (LSB=Pgain db) at time(i) in 2.5 bytes, i=1, ..., m.

dBar = Pgain * depth(i) -Poff
depth(i) = 0xffff if the pressure reading is invalid

time(i) = seconds the pump ran in 2 bytes (signed)
voltagei) = average pump battery counts while pumping in 2 bytes (0.01V)
current(i) = average pump current at bottom in 2 bytes, LSB=1ma

vac0(i) = vacuum counts after pump starts in 1 byte
vac1(i) = vacuum counts before pump stops in 1 byte

Pump time series can be found over multiple messages.

The pump time series typically reports the pressure prior to pumping. However in the last pump
record (Code=14), the pressure reported is post pumping.

For firmware 15Feb17, the Voltage and Current are bad within the pump message for 'short' pumps. This
includes the pump at 100dbar (code=2), Seeks (code=3), and other seeks during drift and falling (codes 4, 5, 10
and 12).

Engineering data (ID=0xe0, 0xe2 , 0xe3, 0xe5, 0xe6)

The engineering data is used to diagnose SOLOII anomalies. A different format is used in each of the 3 distinct
phases of a SOLOII mission. The LS nibble of the ID indicates the phase of the mission.

Byte Contents
0 ID/Mission phase:

0xe0 = 1st diagnostic dive at the start of a mission
0xe2 = end of a normal dive cycle
0xe3 = following mission abort
0xe5 = BITtest
0xe6 = BITtest failure

1-2 Number of bytes in the message, depends on mission phase as described below
3 -> ?? Depends on mission phase as described below

ID=0xe0, Engineering message in 1st diagnostic dive at start of mission
Byte Contents
0 ID/Mission phase = 0xe0
1-2 Number of bytes = 80= 0x50
3 Engineering message version =5
4 #packets in current session
5-10 0 (dummy filler)
11-12 EP -> sattime
13-14 DP->Vcpu = CPU battery voltage counts 0.01V
15-16 DP->Vpmp = Pump battery counts at surface(0.01V)
17-18 DP->Vple = Pump battery counts at end of last pump(0.01V)
19-20 BTvac = pcase vacuum at beginning of BIT in 0.01 inHg
21-22 DP->Air[1] = vac before filling bladder at surface 0.01 inHg
23-24 DP->Air[2] = vac after filling bladder at surface 0.01 inHg
25-26 DP->ISRID = i.d. of last interrupt
27-28 DP->HPavgI = average pump current at bottom, LSB=1ma
29-30 DP->HPmaxI = maximum pump current at bottom, LSB=1ma
31-32 Total seconds pumped to surface
33-34 Seconds pumped at Surface
35-36 SPRX = Surf press before resetoffset (pertains to prev dive)
37-38 SPRXL = press after resetoffset (pertains to prev dive)
39-41 diagP[0] = Press when "in water" sensed
42-44 diagT[0] = Temp when "in water" sensed
45-47 diagS[0] = Salinity when "in water" sensed
48-49 SBnscan = # scans recorded by SBE

// -1 (0xffff) indicates unable to get scan count from SBE
// -2 (0xfffe) indicates SBE never started so SBE didn't reset
// scan count before returning an old value

50-51 Compacted SBntry,SBstrt,SBstop status (see misspec.h):
((DP->SBntry&0xf)<<4) | ((DP->SBstrt&0x3)<<2) | (DP->SBstop&0x3))

52-54 diagP[1] = Shallowest press in profile
55-57 diagT[1] = Shallowest Temp in profile
58-60 diagS[1] = Shallowest Salinity in profile
61-62 BTvac = BIT vacuum in 0.01 inHg
63-64 BTPcur = BIT motor current OUT, LSB=1mA
65-66 BTPsec = BIT Pump seconds
 67 BTPvac[0] = BIT Pump vacuum at beginning of test, before pumping
 68 BTPvac[1] = BIT Pump vacuum after pumping
69-70 BTVple = BIT pump batt 0.01V
71-72 BTVcpu= BIT CPU batt 0.01V
73-74 exception flags

 75 vent data; MSB=#0.1 seconds vent motor ran
 76 LSB LLD status before/after vent ran
 77-78 AbrtCd = code for what caused abort_miss
 79 ; terminator

ID=0xe2, Engineering message in normal dive cycle
Byte Contents

0 ID/Mission phase = 0xe2
1-2 Number of bytes = 102 = 0x66

3 Engineering message version = 5
4 #packets sent in current surface session

5-6 #tries to connect in previous surface session
7-8 parse_X_reply

low order byte number of messages: upper byte bit field of errors
9-10 ATSBD return status in previous surface session

11-12 EP->sattime Seconds taken in previous surface session to send all SBD messages
13-14 DP->Vcpu = CPU battery voltage counts 0.01V
15-16 DP->Vpmp = Pump battery counts at surface(0.01V)
17-18 DP->Vple = Pump battery counts at end of last pump(0.01V)
19-20 DP->Air[0] = pcase vac during sinking @50db with oil all inside pcase ,0.01 inHg
21-22 DP->Air[1] = pcase vac before filling oil bladder at surface 0.01 inHg
23-24 DP->Air[2] = pcase vac after filling bladder at surface 0.01 inHg
25-26 DP->ISRID = i.d. of last interrupt
27-28 DP->HPavgI = average pump current at bottom, LSB=1ma
29-30 DP->HPmaxI = maximum pump current at bottom, LSB=1ma
31-32 Total seconds pumped to surface
33-34 Seconds pumped at Surface
35-36 SPRX = Surf press before resetoffset (pertains to prev dive)
37-38 SPRXL = press after resetoffset (pertains to prev dive)
39-41 diagP[0] = Pressure before pumping for ascent
42-44 diagT[0] = Temp before pumping for ascent
45-47 diagS[0] = Salinity before pumping for ascent
48-50 diagP[1] = Last (shallowest) Pressure scan on ascent
51-53 diagT[1] = Last (shallowest) Temperature scan on ascent
54-56 diagS[1] = Last (shallowest) Salinity scan on ascent
57-58 SBnbad = # bad bins from SBE
59-60 SBnscan = # scans recorded by SBE

// -1 (0xffff) indicates unable to get scan count from SBE
// -2 (0xfffe) indicates SBE never started so SBE didn't reset
// scan count before returning an old value

61-62 Compacted SBntry,SBstrt,SBstop status (see misspec.h):
((DP->SBntry&0xf)<<4) | ((DP->SBstrt&0x3)<<2) | (DP->SBstop&0x3))

63-65 DP->PAVG[0]=average pressure over first half of DRIFT
66-68 DP->TAVG[0]=average temperature over first half of DRIFT
69-71 DP->SAVG[0]=average salinity over first half of DRIFT
72-74 DP->PAVG[1]=average pressure over second half of DRIFT
75-77 DP->TAVG[1]=average temperature over second half of DRIFT
78-80 DP->SAVG[1]=average salinity over second half of DRIFT
81-82 DP->fall_time = seconds from open air valve to end of settle
83-84 DP->fall rate = avg mm/sec while sinking
85-86 DP-> SeekT = seconds pumped in 1st settle to drift
87-88 DP-> SeekP = change of depth (signed 0.1 dbar in 1st settle)
89-90 exception flags (see table)

91 vent data; # 0.1 seconds vent motor ran
92 vent data; LLD status before and after vent ran

93-94 SBE P offset(*800)
95-96 PP->SeekSc; tenths of seconds pumped to target depth

97-98 Number of Packets sent in previous cycle
99 Ice-dectect status [ICE_CHECK_OFF=0; ICE_NOT_FOUND=1;ICE_MIXLAYER=2,

ICE_BREAKUP=3];
100 Compacted Binning Mode (upper 5 bits), Subcycle number (lower 3 bits)

BinMod options:
0: Binned by SBE, curvature packing

 2: Binned by controller (float), curvature packing
16: Binned by SBE, difference packing

 18: Binned by controller (float), difference packing
101 ; terminator

ID=0xe3, Engineering message following mission abort
Byte Contents

0 ID/Mission phase = 0xe3
1-2 Number of bytes = 30 = 0x1e

3 Engineering message version = 5
4 #packets sent in current surface session

5-6 #tries to connect in last surface session
7-8 parse_X_reply:

low order byte number of messages: upper byte bit field of errors
9-10 ATSBD return status in last surface session

11-12 Seconds taken in sending last SBD message
13-14 current CPU battery voltage counts 0.01V
15-16 current pump battery counts 0.01V
17-18 DP->Air[1] = pcase vacuum at beginning of abort 0.01inHg
19-20 DP->Air[0] = pcase vacuum at end of last xmit (previous cycle) 0.01 inHg
23-24 DP->ISRID = i.d. of last interrupt
25-26 AbrtCd = code for what caused abort_miss

0 = no error
1 = current time is later than RTCabort
2 = BAD_P (unable to WakeOST)
3 = BAD_XMITS (unable to send Dive number to SOLO II)
4 = SHORE_CMD (Iridium ground station commanded to go to abort)
5 = FINAL_DIVE (FnlDiv was completed. Mission is done)
6 = BAD_PHASE (Diagnostic dive failed to get GPS fix, pressure

never>dBarGo, or unable to send message to Iridium)
7 = CANT_SURFACE (pressure sensor failure)
8 = BAD_XMITS (while in abort mode)
9 = TIMED_OUT_WAITING (time out before diagnostic dive)

27-28 Empty
29 ; terminator

ID=0xe5, Engineering message following BITest
Byte Contents

0 ID/Mission phase = 0xe5
1-2 Number of bytes = 58 = 0x3a

3 Engineering message version =5
4 #packets sent in this surface session

5-6 SBE P Offset(*800) [Fixed in SBE602 22Jul14, invalid before]
7-8 CPU battery voltage 0.01 V

9-10 no load pump battery voltage 0. 01 V
11-12 pump battery voltage counts at end of last pump (0.01V)

13-14 DP->HPavgl = average pump current at bottom, LSB=1ma
15-16 seconds pumped out during test

17 Oil vacuum before filling bladder 0.01inHG
18 Oil vacuum after filling bladder 0.01 inHG

19-20 DP -> Air[0] = Pcase Vacuum at beginning of BIT. (Oil Bladder Empty) 0.01 inHg
21-22 DP → Air[1] = Pcase Vacuum at end of BIT with air bladder inflated. 0.01 inHg

23 Number of tries needed to open valve
24 Number of tries to close valve

25-26 i.d. of last interrupt
27-56 string returned from SBE pt command

57 ; terminator

ID=0xe6, Engineering message following Failed BITest
Byte Contents

0 ID/Mission phase = 0xe6c
1-2 Number of bytes = 60 = 0x3c

3 Engineering message version =5
4 #packets sent in this surface session

5-6 BITest status register
7-8 SBE P Offset(*800)

9-10 CPU battery voltage 0.01 V
11-12 no load pump battery voltage 0. 01 V
13-14 pump battery voltage counts at end of last pump (0.01V)
15-16 DP->HPavgl = average pump current at bottom, LSB=1ma
17-18 seconds pumped out during test

19 Oil vacuum before filling bladder 0.01inHG
20 Oil vacuum after filling bladder 0.01 inHG

21-22 DP-> Air[0] = Pcase Vacuum at beginning of BIT. (Oil Bladder Empty) 0.01 inHg
23-24 DP → Air[1] = Pcase Vacuum at end of BIT with air bladder inflated. 0.01 inHg

25 Number of tries needed to open valve
26 Number of tries to close valve

27-28 i.d. of last interrupt
29-58 string returned from SBE pt command

59 ; terminator

Mission EEPROM dump (ID=0xdn)
Byte Contents

0 ID/Mission phase = 0xd0,0xd1,0xd2,0xd3 [Possible values 0:d]
1-2 len=Number of bytes (variable, see below)

3- (len-2) ASCII listing of mission parameters
 Each EEPROM parameter has a 6 character name and 5 char value:
 NAMExx=vvvvv |
 The = & | signs are present in the listing of each parameter. (15 bytes/parameter)
 Successive parameters follow without gaps.

len-1 ; terminator at the end of the dump

An example showing only the initial 3 and final 2 elements follows:
PROup = 1| BLOK= 1| PB1= 10|...| XPdly= 0| FstSrf= 0| ;

The EEPROM dump message is sent only in response to a command "P" from the ground station. It is sent over
4 SBD messages (0xd0=328 bytes, 0xd1=328 bytes, 0xd2=328 bytes, 0xd3=72 bytes.

Float Echo (ID=0xde)
Byte Contents

0 ID/Mission phase = 0xde
1-2 len=Number of bytes (includes ID and ;)

3- (len-2) ASCII string
len-1 ; terminator at the end of the echo

Float responds to commands. Within the Echo, the returned ascii string is followed by a ':' if the command was
NOT accepted by the float. and if followed by a ';' then the command was accepted and should change float
behavor.

Argo Data ID=0xf0 Relayed in normal cycles
Byte Contents

0 ID/Mission phase = 0xf0
1-2 Number of bytes = 37 = 0x25

3 Data Version (Minor version in high order nibble, major version in low order)
4-5 Target profile depth
6-7 Target parking depth
8-9 Maximum rise time in minutes

10-11 Target (maximum) fall to parking depth time in minutes
12-13 Maximum fall-from-parking-to-profile-depth time in second
14-15 Target drift time (units=5 minutes; To convert to minutes multiply packed value by 5)

16 Float version (0 SOLOII)
17 Target ascent rate while profiling

18-19 Number of seeks
20-21 Surface Time
22-23 Seek Interval in minutes
24-25 Pressure scaling gain; db=counts/gain-offset
26-27 Pressure scaling offset
28-29 Temperature scaling gain; degreesC=counts/gain-offset
30-31 Temperature scaling offset
32-33 Salinity scaling gain; PSU=counts/gain-offset
34-35 Salinity scaling offset

36 ; terminator

The values of Gain/Offset are now sent back within the Argo Metafile message (0xf0) for data decoding
purposes allowing a way to determine what Gain/offset is used in a given cycle. The GAIN/OFFSET of
Temperature/Salinity/Pressure can be modified via 2-way communcation. Modifying these parameters will effect
all variables returned.

Float Version= SOLOII/S2A 0; Deep SOLO/S2A 1; ALAMO 3

Test Data (ID=0xf1)
Byte Contents

0 ID/Mission phase = 0xf1
1-2 Number of bytes = variable

3 modulo
4-n test data

Exception Flag (Engineering Message) Table [Value sent by float can be sum from multiple errors]

Hex Value Description Mission
0x0001 1 Valve failed to open (no okay return value received)
0x0002 2 Valve failed to close (no okay return value received)
0x0004 4 Questionable pressure (float times out sink but no pump at 100dbar) Fall
0x0008 8 Reset Antenna (toggled, no GPS satellite after 1 minute) Surface
0x0010 16 Antenna switch failure (2nd toggle, no GPS satellite after 1 minute) Surface
0x0020 32 GPS communication error: No GPS Surface
0x0040 64 SBE_BIN_ERROR (no bins are available from SBE) Rise
0x0080 128 Float didn't leave (returned to) the surface (10 min (halved Tlast) Surface
0x0100 256 Restarted profile (stalled > 10dbar) Rise
0x0200 512 BAD_PRES (3 or more bad pressure readings from SBE) Rise
0x0400 1024
0x0800 2048
0x1000 4096 Valve failure during Sink phase of mission
0x2000 8192 Valve failure during Ascend phase of mission
0x4000 16384
0x8000 32768

Surface Interval: Normal versus Fast

The CONFIG FastSrf decides the structure/order of surface interval events

If FstSrf=1 float logic follows as such...
Create drift messages.
Turn on GPS.
Start CTD binning
Pump MnSfp
finish GPS fix.

 If no fix in 1/2 GPSsec,
 Pump (MxSfP-MnSfP)
 Get GPS fix.

Wait for CTD binning to end.
Read CTD binned profile
Create profile messages.
Read Raw data
Create raw data messages
Start CTD pressure zeroing
Create rise,fall, pump, and engineering messages.
Send the data.
Finish CTD pressure zeroing
Start next cycle with a GPS fix.

NOTE: In FstSrf mode, the final rise pressure value (0x050 msg) will take place AFTER the first GPS fix. This is a modification from the
traditional ordering of the surface events.

If FstSrf = 0 (same as all previous float versions) float logic follows as such...

Create drift messages.
Pump for MxSfP secs.
Start CTD binning
Get GPS fix.
Wait for CTD binning to end.
Read CTD binned profile
Create profile messages.
Read Raw data
Create raw data messages
Create rise,fall, pump, and engineering messages.
Send the data.
Tell CTD to zero the pressure.
Wait 2 minutes for CTD
Start next cycle with a GPS fix.

